Skip to content

Enterprise Features Guide v0.1.18.0

Overview

NetIntel-OCR v0.1.18.0 includes enterprise-grade features for deduplication, performance monitoring, batch processing, and module management. This guide covers all enterprise capabilities designed for production deployments at scale.

Table of Contents

  1. Deduplication System
  2. Performance Monitoring
  3. Batch Processing
  4. Module Management
  5. Configuration Templates
  6. Distributed Processing
  7. High Availability
  8. Compliance and Audit

Deduplication System

Overview

The deduplication system uses multiple methods to identify and eliminate duplicate documents: - MD5: Exact duplicate detection - SimHash: Near-duplicate detection with hamming distance - CDC (Content-Defined Chunking): Block-level deduplication

Configuration

# dedup-config.yml
deduplication:
  enabled: true
  methods:
    md5:
      enabled: true
      store_hashes: true

    simhash:
      enabled: true
      bits: 128  # 64 or 128
      hamming_threshold: 5  # 0-10 for similarity

    cdc:
      enabled: true
      min_chunk_size: 4096
      max_chunk_size: 16384
      avg_chunk_size: 8192
      algorithm: "xxhash"  # xxhash, md5, sha256

  storage:
    backend: "redis"  # redis, sqlite, postgresql
    connection:
      host: localhost
      port: 6379
      db: 0

Using Deduplication API

import requests
import hashlib

# Initialize dedup system
response = requests.post(
    "http://localhost:8000/api/v2/deduplication/initialize",
    headers={"Authorization": f"Bearer {token}"},
    json={
        "clear_existing": False,
        "config": {
            "simhash_bits": 128,
            "cdc_enabled": True
        }
    }
)

# Check for duplicates before processing
def check_duplicate(file_path):
    # Calculate MD5
    with open(file_path, 'rb') as f:
        md5_hash = hashlib.md5(f.read()).hexdigest()

    response = requests.post(
        "http://localhost:8000/api/v2/deduplication/check",
        headers={"Authorization": f"Bearer {token}"},
        json={
            "document_path": file_path,
            "md5_hash": md5_hash,
            "dedup_mode": "full",  # exact, fuzzy, hybrid, full
            "simhash_bits": 128,
            "hamming_threshold": 5
        }
    )

    result = response.json()

    if result["is_duplicate"]:
        print(f"Duplicate found: {result['similar_documents']}")
        return True

    return False

# Find similar documents
def find_similar(document_id, threshold=0.85):
    response = requests.post(
        "http://localhost:8000/api/v2/deduplication/find-similar",
        headers={"Authorization": f"Bearer {token}"},
        json={
            "document_id": document_id,
            "similarity_threshold": threshold,
            "include_cdc_analysis": True,
            "limit": 20
        }
    )

    return response.json()["similar_documents"]

Advanced Deduplication with CDC

class CDCDeduplicator:
    """Content-Defined Chunking for block-level deduplication"""

    def __init__(self, min_size=4096, max_size=16384, avg_size=8192):
        self.min_size = min_size
        self.max_size = max_size
        self.avg_size = avg_size
        self.mask = avg_size - 1
        self.chunk_store = {}  # Hash -> content mapping

    def chunk_document(self, content):
        """Split document into content-defined chunks"""
        chunks = []
        offset = 0
        window_size = 48

        while offset < len(content):
            # Find chunk boundary using rolling hash
            chunk_end = min(offset + self.max_size, len(content))
            chunk_start = offset

            # Look for chunk boundary
            if offset + self.min_size < len(content):
                for i in range(offset + self.min_size, chunk_end):
                    # Rolling hash window
                    window = content[i-window_size:i]
                    hash_val = self._rolling_hash(window)

                    if (hash_val & self.mask) == 0:
                        chunk_end = i
                        break

            # Extract chunk
            chunk = content[chunk_start:chunk_end]
            chunk_hash = hashlib.xxhash64(chunk).hexdigest()

            chunks.append({
                "hash": chunk_hash,
                "offset": chunk_start,
                "size": len(chunk),
                "is_duplicate": chunk_hash in self.chunk_store
            })

            # Store unique chunks
            if chunk_hash not in self.chunk_store:
                self.chunk_store[chunk_hash] = chunk

            offset = chunk_end

        return chunks

    def _rolling_hash(self, data):
        """Calculate rolling hash using xxhash"""
        import xxhash
        return xxhash.xxh64(data).intdigest()

    def calculate_dedup_ratio(self, chunks):
        """Calculate deduplication ratio"""
        total_size = sum(c["size"] for c in chunks)
        unique_size = sum(c["size"] for c in chunks if not c["is_duplicate"])

        dedup_ratio = 1 - (unique_size / total_size) if total_size > 0 else 0

        return {
            "total_chunks": len(chunks),
            "unique_chunks": sum(1 for c in chunks if not c["is_duplicate"]),
            "total_size": total_size,
            "unique_size": unique_size,
            "dedup_ratio": dedup_ratio,
            "space_saved": total_size - unique_size
        }

Performance Monitoring

Real-time Metrics Collection

class PerformanceMonitor:
    """Enterprise performance monitoring system"""

    def __init__(self, api_base="http://localhost:8000"):
        self.api_base = api_base
        self.metrics_history = []

    def get_current_metrics(self):
        """Get current system metrics"""

        response = requests.get(
            f"{self.api_base}/api/v2/performance/metrics",
            headers={"Authorization": f"Bearer {token}"}
        )

        metrics = response.json()

        # Add timestamp
        metrics["timestamp"] = datetime.now().isoformat()
        self.metrics_history.append(metrics)

        return metrics

    def run_benchmark(self, test_type="comprehensive"):
        """Run performance benchmark"""

        benchmarks = {
            "simhash": {
                "dataset_size": 10000,
                "iterations": 5
            },
            "cdc": {
                "dataset_size": 5000,
                "iterations": 3
            },
            "vector_search": {
                "dataset_size": 100000,
                "iterations": 10
            },
            "kg_extraction": {
                "dataset_size": 1000,
                "iterations": 3
            }
        }

        results = {}

        for bench_type, params in benchmarks.items():
            response = requests.post(
                f"{self.api_base}/api/v2/performance/benchmark",
                headers={"Authorization": f"Bearer {token}"},
                json={
                    "test_type": bench_type,
                    **params
                }
            )

            results[bench_type] = response.json()

        return results

    def analyze_performance(self):
        """Analyze performance trends"""

        if len(self.metrics_history) < 2:
            return None

        # Calculate trends
        cpu_trend = self._calculate_trend([m["cpu_usage"]["current"] for m in self.metrics_history])
        memory_trend = self._calculate_trend([m["memory"]["used_gb"] for m in self.metrics_history])

        # Identify bottlenecks
        latest = self.metrics_history[-1]

        bottlenecks = []
        if latest["cpu_usage"]["current"] > 80:
            bottlenecks.append("High CPU usage")
        if latest["memory"]["used_gb"] / (latest["memory"]["used_gb"] + latest["memory"]["available_gb"]) > 0.9:
            bottlenecks.append("High memory usage")
        if latest["processing_stats"]["documents_per_hour"] < 50:
            bottlenecks.append("Low throughput")

        return {
            "trends": {
                "cpu": cpu_trend,
                "memory": memory_trend
            },
            "bottlenecks": bottlenecks,
            "recommendations": self._generate_recommendations(bottlenecks)
        }

    def _calculate_trend(self, values):
        """Calculate trend direction"""
        if len(values) < 2:
            return "stable"

        recent = values[-5:]
        avg_recent = sum(recent) / len(recent)
        avg_all = sum(values) / len(values)

        if avg_recent > avg_all * 1.1:
            return "increasing"
        elif avg_recent < avg_all * 0.9:
            return "decreasing"
        else:
            return "stable"

    def _generate_recommendations(self, bottlenecks):
        """Generate performance recommendations"""

        recommendations = []

        if "High CPU usage" in bottlenecks:
            recommendations.append("Consider scaling horizontally or optimizing algorithms")
        if "High memory usage" in bottlenecks:
            recommendations.append("Enable swap or increase RAM allocation")
        if "Low throughput" in bottlenecks:
            recommendations.append("Increase worker count or optimize pipeline")

        return recommendations

Custom Metrics

# Define custom metrics
custom_metrics = {
    "document_processing": {
        "pages_per_second": 0,
        "ocr_accuracy": 0,
        "extraction_errors": 0
    },
    "search_performance": {
        "avg_latency_ms": 0,
        "queries_per_second": 0,
        "cache_hit_rate": 0
    },
    "storage_efficiency": {
        "dedup_ratio": 0,
        "compression_ratio": 0,
        "storage_saved_gb": 0
    }
}

# Report custom metrics
response = requests.post(
    "http://localhost:8000/api/v2/performance/metrics/custom",
    headers={"Authorization": f"Bearer {token}"},
    json=custom_metrics
)

Batch Processing

Batch Job Configuration

# batch-config.yml
batch_processing:
  max_workers: 16
  worker_type: "process"  # thread, process, distributed
  batch_size: 100
  checkpoint_interval: 500
  memory_limit: "8GB"

  queue:
    type: "redis"  # redis, rabbitmq, sqs
    max_size: 10000
    ttl: 86400

  error_handling:
    max_retries: 3
    retry_delay: 60
    dead_letter_queue: true

  output:
    format: "jsonl"
    compression: "gzip"
    partitioning: "date"  # date, size, count

Batch Processing Implementation

class EnterpriseBatchProcessor:
    """Enterprise batch processing system"""

    def __init__(self, config_path="batch-config.yml"):
        self.config = self._load_config(config_path)
        self.job_queue = []
        self.results = {}

    def submit_batch_job(self, input_path, output_path, options=None):
        """Submit batch processing job"""

        job_request = {
            "input_path": input_path,
            "output_path": output_path,
            "parallel_workers": self.config["max_workers"],
            "batch_size": self.config["batch_size"],
            "checkpoint_interval": self.config["checkpoint_interval"],
            "auto_merge": True,
            "skip_existing": True,
            "processing_options": options or {
                "enable_ocr": True,
                "enable_kg": True,
                "enable_vector": True,
                "enable_dedup": True
            }
        }

        response = requests.post(
            "http://localhost:8000/api/v2/batch/submit",
            headers={"Authorization": f"Bearer {token}"},
            json=job_request
        )

        job_info = response.json()
        self.job_queue.append(job_info["batch_id"])

        return job_info

    def monitor_batch_jobs(self):
        """Monitor all batch jobs"""

        monitoring_data = {}

        for batch_id in self.job_queue:
            response = requests.get(
                f"http://localhost:8000/api/v2/batch/{batch_id}/progress",
                headers={"Authorization": f"Bearer {token}"}
            )

            progress = response.json()

            monitoring_data[batch_id] = {
                "status": progress["status"],
                "progress": f"{progress['processed']}/{progress['total_documents']}",
                "throughput": progress["current_throughput"],
                "eta": progress["eta_minutes"],
                "errors": progress.get("failed", 0)
            }

            # Alert on issues
            if progress["failed"] > 10:
                self._send_alert(f"High error rate in batch {batch_id}: {progress['failed']} failures")

        return monitoring_data

    def handle_failed_documents(self, batch_id):
        """Handle failed documents in batch"""

        response = requests.get(
            f"http://localhost:8000/api/v2/batch/{batch_id}/failures",
            headers={"Authorization": f"Bearer {token}"}
        )

        failures = response.json()

        # Retry failed documents
        retry_batch = {
            "documents": failures["failed_documents"],
            "retry_strategy": "exponential_backoff",
            "max_retries": 5
        }

        response = requests.post(
            f"http://localhost:8000/api/v2/batch/{batch_id}/retry",
            headers={"Authorization": f"Bearer {token}"},
            json=retry_batch
        )

        return response.json()

    def optimize_batch_performance(self, batch_id):
        """Optimize batch processing based on performance"""

        # Get current performance metrics
        response = requests.get(
            f"http://localhost:8000/api/v2/batch/{batch_id}/metrics",
            headers={"Authorization": f"Bearer {token}"}
        )

        metrics = response.json()

        # Calculate optimal settings
        optimization = {}

        if metrics["avg_document_time"] > 60:  # Slow processing
            optimization["parallel_workers"] = min(32, self.config["max_workers"] * 2)
            optimization["batch_size"] = max(10, self.config["batch_size"] // 2)

        if metrics["memory_usage"] > 0.8:  # High memory
            optimization["batch_size"] = max(10, self.config["batch_size"] // 2)
            optimization["enable_streaming"] = True

        if metrics["error_rate"] > 0.1:  # High errors
            optimization["validation_level"] = "strict"
            optimization["retry_policy"] = "aggressive"

        # Apply optimizations
        if optimization:
            response = requests.patch(
                f"http://localhost:8000/api/v2/batch/{batch_id}/optimize",
                headers={"Authorization": f"Bearer {token}"},
                json=optimization
            )

            return response.json()

        return {"status": "no_optimization_needed"}

Distributed Batch Processing

import asyncio
from concurrent.futures import ProcessPoolExecutor
import multiprocessing as mp

class DistributedBatchProcessor:
    """Distributed batch processing across multiple nodes"""

    def __init__(self, nodes):
        self.nodes = nodes  # List of worker node URLs
        self.task_queue = mp.Queue()
        self.result_queue = mp.Queue()

    async def distribute_work(self, documents, strategy="round_robin"):
        """Distribute documents across worker nodes"""

        if strategy == "round_robin":
            node_assignments = self._round_robin_distribution(documents)
        elif strategy == "load_balanced":
            node_assignments = await self._load_balanced_distribution(documents)
        elif strategy == "locality_aware":
            node_assignments = self._locality_aware_distribution(documents)
        else:
            raise ValueError(f"Unknown strategy: {strategy}")

        # Submit work to nodes
        tasks = []
        for node, docs in node_assignments.items():
            task = self._submit_to_node(node, docs)
            tasks.append(task)

        # Wait for all nodes to complete
        results = await asyncio.gather(*tasks)

        return self._merge_results(results)

    def _round_robin_distribution(self, documents):
        """Simple round-robin distribution"""

        assignments = {node: [] for node in self.nodes}

        for i, doc in enumerate(documents):
            node = self.nodes[i % len(self.nodes)]
            assignments[node].append(doc)

        return assignments

    async def _load_balanced_distribution(self, documents):
        """Distribute based on node load"""

        # Get load from each node
        loads = {}
        for node in self.nodes:
            response = await self._get_node_load(node)
            loads[node] = response["load"]

        # Sort nodes by load
        sorted_nodes = sorted(loads.items(), key=lambda x: x[1])

        # Distribute proportionally
        assignments = {node: [] for node in self.nodes}
        for i, doc in enumerate(documents):
            # Assign to least loaded node
            node = sorted_nodes[0][0]
            assignments[node].append(doc)

            # Update load estimate
            sorted_nodes[0] = (node, sorted_nodes[0][1] + 1)
            sorted_nodes.sort(key=lambda x: x[1])

        return assignments

    async def _submit_to_node(self, node, documents):
        """Submit batch to worker node"""

        async with aiohttp.ClientSession() as session:
            async with session.post(
                f"{node}/process_batch",
                json={"documents": documents},
                timeout=aiohttp.ClientTimeout(total=3600)
            ) as response:
                return await response.json()

Module Management

Dynamic Module Configuration

class ModuleManager:
    """Enterprise module management system"""

    def __init__(self):
        self.modules = self._discover_modules()
        self.config = self._load_module_config()

    def _discover_modules(self):
        """Discover available modules"""

        response = requests.get(
            "http://localhost:8000/api/v2/modules/status",
            headers={"Authorization": f"Bearer {token}"}
        )

        return response.json()

    def enable_module(self, module_name, config=None):
        """Enable a specific module"""

        request_data = {
            "module": module_name,
            "enabled": True,
            "config": config or {}
        }

        response = requests.post(
            f"http://localhost:8000/api/v2/modules/{module_name}/enable",
            headers={"Authorization": f"Bearer {token}"},
            json=request_data
        )

        return response.json()

    def configure_modules(self, configuration):
        """Configure multiple modules"""

        response = requests.post(
            "http://localhost:8000/api/v2/modules/configure",
            headers={"Authorization": f"Bearer {token}"},
            json=configuration
        )

        return response.json()

    def get_module_dependencies(self, module_name):
        """Get module dependencies"""

        response = requests.get(
            f"http://localhost:8000/api/v2/modules/{module_name}/dependencies",
            headers={"Authorization": f"Bearer {token}"}
        )

        return response.json()

    def validate_module_configuration(self):
        """Validate current module configuration"""

        response = requests.post(
            "http://localhost:8000/api/v2/modules/validate",
            headers={"Authorization": f"Bearer {token}"}
        )

        validation_result = response.json()

        if not validation_result["valid"]:
            print("Configuration issues found:")
            for issue in validation_result["issues"]:
                print(f"  - {issue}")

        return validation_result

    def optimize_module_loading(self):
        """Optimize module loading order"""

        # Get module dependencies
        dependencies = {}
        for module in self.modules["installed"]:
            deps = self.get_module_dependencies(module)
            dependencies[module] = deps["dependencies"]

        # Topological sort for optimal loading order
        loading_order = self._topological_sort(dependencies)

        return {
            "optimal_order": loading_order,
            "current_order": list(self.modules["installed"].keys()),
            "recommendation": "Apply optimal loading order for faster startup"
        }

    def _topological_sort(self, dependencies):
        """Topological sort for dependency resolution"""

        visited = set()
        stack = []

        def visit(module):
            if module in visited:
                return

            visited.add(module)

            for dep in dependencies.get(module, []):
                visit(dep)

            stack.append(module)

        for module in dependencies:
            visit(module)

        return stack[::-1]

Configuration Templates

Template Management

class ConfigurationTemplateManager:
    """Manage and apply configuration templates"""

    def __init__(self):
        self.templates = self._load_templates()

    def _load_templates(self):
        """Load available templates"""

        response = requests.get(
            "http://localhost:8000/api/v2/config/templates",
            headers={"Authorization": f"Bearer {token}"}
        )

        return response.json()["templates"]

    def apply_template(self, template_name, customizations=None):
        """Apply configuration template"""

        request_data = {
            "template": template_name,
            "customize": customizations or {}
        }

        response = requests.post(
            "http://localhost:8000/api/v2/config/apply-template",
            headers={"Authorization": f"Bearer {token}"},
            json=request_data
        )

        return response.json()

    def create_custom_template(self, name, config):
        """Create custom configuration template"""

        template_data = {
            "name": name,
            "description": f"Custom template created on {datetime.now()}",
            "config": config,
            "metadata": {
                "created_by": "admin",
                "version": "1.0.0",
                "compatible_versions": ["0.1.18.0"]
            }
        }

        response = requests.post(
            "http://localhost:8000/api/v2/config/templates/create",
            headers={"Authorization": f"Bearer {token}"},
            json=template_data
        )

        return response.json()

    def get_template_recommendations(self, workload_profile):
        """Get template recommendations based on workload"""

        profiles = {
            "small": "minimal",
            "medium": "development",
            "large": "production",
            "enterprise": "enterprise",
            "cloud": "cloud"
        }

        recommended = profiles.get(workload_profile, "minimal")

        # Get template details
        template = next((t for t in self.templates if t["name"] == recommended), None)

        return {
            "recommended_template": recommended,
            "reason": f"Best suited for {workload_profile} workloads",
            "config": template,
            "alternatives": [t["name"] for t in self.templates if t["name"] != recommended]
        }

Enterprise Configuration Examples

# enterprise-config.yml
enterprise:
  deployment:
    mode: "distributed"
    nodes: 8
    regions: ["us-east", "us-west", "eu-central"]

  high_availability:
    enabled: true
    replication_factor: 3
    failover_timeout: 30
    health_check_interval: 10

  security:
    encryption_at_rest: true
    encryption_in_transit: true
    audit_logging: true
    compliance_mode: ["HIPAA", "PCI-DSS", "SOC2"]

  performance:
    cache_size: "32GB"
    worker_threads: 32
    connection_pool_size: 100
    batch_size: 1000

  monitoring:
    metrics_collection_interval: 10
    log_level: "INFO"
    alerting:
      enabled: true
      channels: ["email", "slack", "pagerduty"]

  backup:
    enabled: true
    schedule: "0 2 * * *"
    retention_days: 30
    destinations: ["s3", "azure", "local"]

Distributed Processing

Multi-Node Architecture

class DistributedOrchestrator:
    """Orchestrate processing across multiple nodes"""

    def __init__(self, config):
        self.nodes = config["nodes"]
        self.coordinator_url = config["coordinator"]
        self.health_checker = HealthChecker(self.nodes)

    async def process_distributed(self, job):
        """Process job across distributed nodes"""

        # 1. Split job into tasks
        tasks = self._split_job(job)

        # 2. Check node health
        healthy_nodes = await self.health_checker.get_healthy_nodes()

        # 3. Distribute tasks
        assignments = self._assign_tasks(tasks, healthy_nodes)

        # 4. Execute tasks
        results = await self._execute_distributed(assignments)

        # 5. Handle failures
        failed_tasks = [t for t in results if t["status"] == "failed"]
        if failed_tasks:
            results = await self._handle_failures(failed_tasks)

        # 6. Aggregate results
        return self._aggregate_results(results)

    def _split_job(self, job):
        """Split job into distributable tasks"""

        tasks = []
        chunk_size = job["total_documents"] // len(self.nodes)

        for i in range(len(self.nodes)):
            start = i * chunk_size
            end = start + chunk_size if i < len(self.nodes) - 1 else job["total_documents"]

            tasks.append({
                "id": f"task_{i}",
                "start": start,
                "end": end,
                "job_id": job["id"],
                "config": job["config"]
            })

        return tasks

    async def _execute_distributed(self, assignments):
        """Execute tasks on assigned nodes"""

        async def execute_on_node(node, task):
            try:
                async with aiohttp.ClientSession() as session:
                    async with session.post(
                        f"{node}/execute",
                        json=task,
                        timeout=aiohttp.ClientTimeout(total=3600)
                    ) as response:
                        return await response.json()
            except Exception as e:
                return {
                    "status": "failed",
                    "error": str(e),
                    "task": task
                }

        tasks = []
        for node, node_tasks in assignments.items():
            for task in node_tasks:
                tasks.append(execute_on_node(node, task))

        return await asyncio.gather(*tasks)

High Availability

Failover Configuration

class HighAvailabilityManager:
    """Manage high availability and failover"""

    def __init__(self, config):
        self.primary = config["primary"]
        self.replicas = config["replicas"]
        self.health_check_interval = config["health_check_interval"]
        self.failover_timeout = config["failover_timeout"]

    async def monitor_health(self):
        """Monitor health of all nodes"""

        while True:
            # Check primary
            primary_healthy = await self._check_node_health(self.primary)

            if not primary_healthy:
                # Initiate failover
                await self._initiate_failover()

            # Check replicas
            for replica in self.replicas:
                replica_healthy = await self._check_node_health(replica)
                if not replica_healthy:
                    await self._handle_replica_failure(replica)

            await asyncio.sleep(self.health_check_interval)

    async def _initiate_failover(self):
        """Initiate failover to replica"""

        # Select new primary
        for replica in self.replicas:
            if await self._check_node_health(replica):
                # Promote replica to primary
                await self._promote_to_primary(replica)

                # Update configuration
                self.replicas.remove(replica)
                self.replicas.append(self.primary)
                self.primary = replica

                # Notify clients
                await self._notify_failover(replica)

                break

    async def _promote_to_primary(self, node):
        """Promote replica to primary"""

        async with aiohttp.ClientSession() as session:
            async with session.post(
                f"{node}/promote",
                json={"role": "primary"}
            ) as response:
                return await response.json()

Compliance and Audit

Audit System

class ComplianceAuditSystem:
    """Enterprise compliance and audit system"""

    def __init__(self):
        self.audit_log = []
        self.compliance_rules = self._load_compliance_rules()

    def log_operation(self, operation):
        """Log operation for audit"""

        audit_entry = {
            "timestamp": datetime.now().isoformat(),
            "operation": operation["type"],
            "user": operation["user"],
            "resource": operation["resource"],
            "result": operation["result"],
            "metadata": operation.get("metadata", {})
        }

        self.audit_log.append(audit_entry)

        # Check compliance
        violations = self._check_compliance(audit_entry)
        if violations:
            self._handle_violations(violations)

        # Persist to audit store
        self._persist_audit_entry(audit_entry)

    def generate_compliance_report(self, standard="SOC2"):
        """Generate compliance report"""

        report = {
            "standard": standard,
            "period": {
                "start": datetime.now() - timedelta(days=30),
                "end": datetime.now()
            },
            "summary": {},
            "details": [],
            "violations": [],
            "recommendations": []
        }

        # Analyze audit log
        for entry in self.audit_log:
            # Check against compliance rules
            for rule in self.compliance_rules[standard]:
                if not self._evaluate_rule(rule, entry):
                    report["violations"].append({
                        "rule": rule["name"],
                        "entry": entry,
                        "severity": rule["severity"]
                    })

        # Generate summary
        report["summary"] = {
            "total_operations": len(self.audit_log),
            "violations": len(report["violations"]),
            "compliance_score": 100 - (len(report["violations"]) / len(self.audit_log) * 100)
        }

        return report

    def _check_compliance(self, entry):
        """Check entry against compliance rules"""

        violations = []

        for standard, rules in self.compliance_rules.items():
            for rule in rules:
                if not self._evaluate_rule(rule, entry):
                    violations.append({
                        "standard": standard,
                        "rule": rule,
                        "entry": entry
                    })

        return violations

    def _evaluate_rule(self, rule, entry):
        """Evaluate compliance rule"""

        # Example rule evaluation
        if rule["type"] == "data_retention":
            # Check if data retention policy is followed
            return True

        if rule["type"] == "access_control":
            # Check if proper access controls are in place
            return entry["user"] in rule["allowed_users"]

        if rule["type"] == "encryption":
            # Check if data is encrypted
            return entry.get("metadata", {}).get("encrypted", False)

        return True

Best Practices

1. Deduplication Strategy

# Optimal deduplication pipeline
def optimal_dedup_pipeline(document):
    # 1. Quick MD5 check
    if check_md5_exists(document):
        return "exact_duplicate"

    # 2. SimHash for near-duplicates
    if check_simhash_similarity(document) > 0.95:
        return "near_duplicate"

    # 3. CDC for partial duplicates
    chunks = cdc_chunk(document)
    if get_dedup_ratio(chunks) > 0.5:
        return "partial_duplicate"

    return "unique"

2. Batch Processing Optimization

# Optimal batch configuration
optimal_batch = {
    "workers": min(32, cpu_count() * 2),
    "batch_size": 100 if memory_available() > 16 else 50,
    "checkpoint_interval": 500,
    "error_strategy": "dead_letter_queue",
    "monitoring": "prometheus"
}

3. Module Loading

# Load modules in optimal order
module_order = [
    "base",
    "performance",  # C++ extensions first
    "kg",           # Heavy modules
    "vector",
    "api",          # API last
    "mcp"
]

Next Steps

  1. Configure Security: See the Authentication & Security Guide
  2. Deploy to Production: Follow the Production Deployment Guide
  3. Learn API v2: Read the API v2 Guide